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Formic acid generated from CO2 has been proposed both as a key 

intermediate renewable chemical feedstock as well as a potential 

energy storage chemical media for hydrogen. In this paper, we 

describe a novel three compartment electrochemical cell 

configuration with the capability of directly producing a pure 

formic acid product in the concentration range of 5 – 20 wt% at 

high current densities and Faradaic yields. The electrochemical cell 

employs a Dioxide Materials Sustainion™ anion membrane, 

allowing for the improved CO2 electrochemical reduction 

performance. Stable electrochemical cell performance for more 

than 500 hours has been experimentally demonstrated. 

 

 

Introduction 

 

Developing technologies in reducing CO2 emissions by converting it into selected 

economically sustainable chemical and fuel end-products is one key controlling 

environmental atmospheric CO2  levels. 

 

 Formic acid and CO have been identified as two key chemical intermediate products 

that can be commercially viable if produced at: 

 

• High commercial current densities (100 mA/cm
2
 or greater) 

• High Faradaic efficiencies (90%+) 

• Low cell potential  

• Long operating life (5 years or greater) 

• Low CAPEX  

 

Formic acid also has potential applications in energy storage and hydrogen generation 

as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Formic acid market and current and new product applications. 
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Over the past 30 years, researchers have worked on numerous catalysts and 

conditions in electrochemically reducing CO2 to formate/formic acid in the quest for 

obtaining high conversions to formate at current efficiencies (1-27). The utilization of 

GDEs helps solve the solubility limit of CO2 in aqueous systems (33 mM) at ambient 

temperature and pressure, but their application and testing require these additional items: 

 

• Utilizing GDEs to improve CO2 mass transport into formate/formic acid 

• Preventing GDEs from electrolyte flooding 

• Identifying and evaluating best catalysts with the GDEs 

• Determining optimum cell configurations in operating the system 

• Conducting longer term experimental testing to confirm performance and stability 

of catalysts and operating system 

 

 

Cell Design Development 

 

Dioxide Materials has developed key technologies in solving these issues designing a 

novel 3-compartment cell design employing a recently developed anion membrane (28-

36). 

 

• Employing a membrane to prevent cathode GDE flooding 

• Development of imidazole-based ionomers that reduce CO2 reduction 

overpotentials 

• Development of a highly conductive, alkaline stable anion membrane - 

Sustainion™ membrane 

• Selection of GDE cathode electrocatalysts 

• Cell design modifications to improve conductivity 

• Membrane selection to reduce crossover 

• Stability testing, preferably 100 hours and more  

 

The Dioxide Materials 3-compartment cell design is shown in Figure 2. The cell 

design incorporates a center flow compartment bounded by a cation ion exchange 

membrane on the anode side and a Sustainion™ anion exchange membrane on the 

cathode side. The center compartment uses a cation ion exchange resin media to provide 

compartment electrolyte conductivity. Only DI water is used as the anolyte and flow into 

the center compartment. Pure formic acid is the product from this cell configuration. 
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Figure 2.  Dioxide Materials 3-compartment formic acid cell design. 

 

 

Experimental Results 

 

 

Figure 3 shows the current produced as a function of the cell voltage in a cell with a 

tin cathode, and IrO2 anode, and deionized water in the middle compartment with no 

electrolyte added to the water. Notice that one can obtain up to 200 mA/cm² at reasonable 

cell voltages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Formic acid cell voltage versus current density plot. 

 

 

Figure 4 shows how the exit concentration and Faradaic efficiency varies with a 

single pass flowrate. Experimentally, as the Faradaic efficiency decreases as the formic 

acid concentration rises. Physically, some of the formic acid is transported to the anode, 

where it is oxidized leading to formic acid loss. The use of thicker and/or higher MW 

PSA cation membranes significantly reduces these formate losses.  
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Figure 4. Cell formic acid FE vs formic acid product in wt%. A PSA cation 

membrane not optimized for minimizing formate ion transport was used in the 

test runs. 

 

 

Figure 5 shows a steady state run. In this case, we were able to maintain an output 

concentration of about 15 wt% formic acid for more than 500 hours, with no significant 

change in cell voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cell performance during an extended 550 hour test run. 

 

 

Formate ion crossover transport through the cation ion exchange membrane was 

found to be the major loss of Faradaic efficiency (FE) in the cell when operating at these 
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high formic acid concentrations. Utilizing a Nafion® 324 membrane, the formate 

crossover through the membrane was substantially reduced. The formic acid cell FE 

performance increased dramatically to 94%,  producing a 10 wt% formic acid product at 

a 140 mA/cm
2
 current density. 

 

Summary 

 

A novel 3-compartment electrochemical cell design with the capability of generating 

a high concentration pure formic acid product from the reduction of CO2 is detailed in 

this paper.  The cell configuration consists of an anode compartment, a center flow 

compartment containing a cation exchange resin electrolyte bounded by a PFSA cation 

exchange membrane on the anode side and a proprietary Sustanion™ anion exchange 

membrane on the cathode side, and employing an imidazole-nanoparticle Sn catalyst-

based GDE in the cathode compartment. The electrochemical cell operated at a current 

density of 140 mA cm
-2

 at a cell voltage of only 3.5 V with formic acid Faradaic 

efficiencies of up to 94%.  High formic acid Faradaic efficiencies were found to be 

critically dependent on the selection of the cation membrane utilized in the anolyte 

compartment side of the cell. Nafion® 324 was found to provide the lowest 

formate/formic acid crossover into the anolyte compartment. The novel formic acid cell 

design shows a potential route for future commercial use of formic acid as a sustainable 

chemical feedstock in generating downstream chemicals, as well becoming a viable 

chemical-based energy storage medium in hydrogen storage/generation. 
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