<
点此链接,观看更多开箱视频,关注科学材料站Bilibili主页
1. 介绍
CeTech是一种没有微孔层(MPL)的编织碳纤维布。它的总厚度为330微米。CeTech是传统碳布气体扩散层(GDL)材料的低成本替代品。
更多介绍请阅读《科学材料站Z博士:碳布基材知多少?》
科学材料站与碳能建立官方合作,成为其一级经销商,在全球范围内推广碳能全系列产品。
欢迎广大厂商、经销商询价,价格从优。
点击上方【购买渠道】进行购买或咨询
2. CeTech碳布的优点
- 高压缩性
- 自动质量控制检验系统
- 避免“水淹”
3. 特点:
(1)引导气体从石墨板的导流沟槽到触煤层;
(2)顺利把反应式产生物-水排除于触媒层之外,避免淹水问题;
(3)电流的传导器;
(4)在燃料电池反应时具散热功用;
(5)足够的强度支撑MEA当其因为吸水过多而变形。
4. 文章引用
欢迎在文章中引用从科学材料站(SCI Materials Hub)获取的材料
W0S1011 Carbon Cloth Substrate was obtained from SCI Materials Hub.
参数下载:
W0S1011 生碳布(基底) 技术参数 | |
材料类型 | 碳纤维编织布 |
厚度 | 0.36毫米(360微米) |
基本重量(克/平方米) | 130 |
透气度 | <10 |
电阻率(通过平面) | <5mΩ*cm2 |
抗拉强度 | MD:10 N / cm和XD:5 N / cm |
PTFE处理 | 无 |
微孔层 | 无 |
碳布一般采用PAN聚丙烯腈作为原料加以纺织,再经过高温处理而成。台湾碳能生产的W0S1009、W0S1011碳布是基础型碳布基底,呈弱疏水性,一般用作材料生长或负载的基底。如果有需要,可以采用不同方法如化学法(如硫酸浸泡等)、物理法,将疏水性碳布改性成亲水性碳布。
台湾碳能生产的W1S1009、W1S1010、W1S1011碳布是疏水微孔层处理型碳布,呈强疏水性,分别是在W0S1009、W0S1010、W0S1011基础型碳布表面涂布了微孔层MPL和PTFE,增强透气性,一般用作各类燃料电池如氢燃料电池的空气阴极。
如果客户希望将碳布用作燃料电池阴极,可以直接购买W1S1009、W1S1010、W1S1011碳布,自己负载催化剂层C即可,如果购买W0S1009、W0S1011碳布,除了负载催化剂层C外,还需要在碳布另外一面负载碳基底层A和气体扩散层B。
简要方法如下,文献参考:Cheng, S.; Liu, H.; Logan, B. E. (2006), Electrochemistry Communications 8, 489-494. A(碳布基底层)、B(PTFE即特氟龙扩散层)、C(Pt/C催化剂层)。下面就ABC的制作分别阐述:
A:涂覆碳基底层
1. 用小刀裁剪碳布4*8 cm(两块4*4 cm的阴极);
2. 按照1cm2碳布负载1.56 mg的标准,用电子天平称量50mg炭黑;
3. 按照1 mg炭黑对应12 uL 40%PTFE(特氟龙,聚四氟乙烯)的标准,用移液器取600 uL;
4. 将称量的炭黑加入一个小塑料瓶,放入6-8颗小玻璃珠,加入移取的PTFE,盖上瓶盖,摇晃20s,形成悬浮液;
5. 用刷子将悬浮液涂覆在碳布的一面,注意动作轻慢,避免炭黑进入碳布的另一面;
6. 将涂覆有炭黑的碳布放入一个硬纸板上,静置2h自然干燥,或者用一个电吹风加速;
7. 将自然干燥的碳布放在一个预热到370摄氏度炉子里面的高温陶瓷板上(注意一定要戴高温手套,避免烧伤),加热20-30 min;
8. 将高温陶瓷板从炉中拿出来,让碳布自然冷却,或者将炉关闭,炉门打开,缓慢降温;由于碳布上已经涂布了PTFE,碳布会变得更卷曲,这是正常现象。
B.涂覆扩散层(PTFE,即特氟龙,聚四氟乙烯)
(1)充分摇晃60%的PTFE,保证这种悬浮液充分混匀;
(2)将摇匀的60%PTFE溶液均匀涂覆在刚才的碳布那面;
(3)用毛刷去除任何气泡或大块PTFE;
(4)空气干燥5-10 min,干燥时涂覆面颜色变白;
(5)将涂覆有PTFE的碳布放入炉中370摄氏度加热10-15 min;
(6)将其自然冷却,颜色会变成亮黑色;
(7)再重复步骤(1)-(5)3次,使得PTFE涂层一共有4层,这是Z适宜的扩散层厚度;
(8)用剪刀裁剪出12cm2的圆形阴极碳布,或者用一个小铁锤击打木板模具获得这种12cm2的圆形阴极碳布;
C. 涂覆Pt/C催化剂
(1)称量10%的Pt/C催化剂,确保1cm2的碳布碳布有0.5 mg的Pt,比如12cm2的碳布需要6 mg Pt,需要60 mg的Pt/C催化剂;
(2)将称量好的Pt/C催化剂放入一个塑料瓶中,再按照1mg Pt/C催化剂配比0.83 uL的蒸馏水的比例,如60 mg的Pt/C催化剂需要50 uL的蒸馏水。将蒸馏水逐滴滴加到塑料瓶中,加6-8颗玻璃珠,摇晃20 s.这个步骤叫做Pt催化剂的“水处理”;
注意:如果水的量不够,或者没有摇匀,会使得Pt与Nafion膜中的乙醇反应,导致放热甚至起火;
(3)按照1 mg的Pt/C催化剂加入6.67 uL的Nafion溶液和3.33 uL的异丙醇比例,比如60 mg的Pt/C催化剂需要加入400 uL的5%的Nafion溶液和200 uL的异丙醇;
(4)将调好的糊状物涂覆在碳布的扩散层(PTFE)的另一面;
(5)将涂覆好的碳布空气干燥至少24h,或者用电吹风的低档加热以加速。
科学材料站与台湾碳能CeTech公司于2021年6月建立官方合作,将在全球范围内推广碳能全系列产品。供应质量优异的碳纸、碳布、石墨毡、钛纤维毡等产品,可以用于燃料电池膜组件、电极材料制备、纳米材料基底合成、液流电池等研究方向。
1.手机淘宝(官方淘宝店铺:科学材料站)
2. 点击进入淘宝网页链接
W0S1011 生碳布(基底) | |||
产品代码 | 产品描述 | 产品价格及规格 | 货期 |
121004 | W0S1011 Carbon Cloth Substrate without PTFE& MPL | ¥68 (10cm*10cm,货号:121004-1010) ¥218 (20cm*20cm,货号:121004-2020) ¥713 (40cm*40cm,货号:121004-4040) | 现货 |
SCI Materials Hub is Committed to Offering The Best Price & Customer Services! |
* 大量需求请联系我们咨询更多折扣
** 可提供13%增值税专用发票
*** 3平米及以上需求请联系我们咨询大量优惠价
3. 其它联系方式
电话:+86 130-0303-8751/+86 156-0553-2352
微信:SCI-Materials-Hub
如需报价单请联系:Email: contact@scimaterials.cn
Partial references citing our materials (from Google Scholar)
1.
二氧化碳还原
1. ACS Nano Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO2 Reduction
The bipolar membrane (Fumasep FBM) in this paper was purchased from SCI Materials Hub, which was used in rechargeable Zn-CO2 battery tests. The authors reported a strain relaxation strategy to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realized an outstanding CO2-to-CO Faradaic efficiency of 96.6% with outstanding activity and durability toward a Zn-CO2 battery.
2. Front. Chem. Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel Catalyst
In this paper, Vulcan XC-72R was purchased from SCI Materials Hub. Vulcan XC 72R carbon is the most common catalyst support used in the anode and cathode electrodes of Polymer Electrolyte Membrane Fuel Cells (PEMFC), Direct Methanol Fuel Cells (DMFC), Alkaline Fuel Cells (AFC), Microbial Fuel Cells (MFC), Phosphoric Acid Fuel Cells (PAFC), and many more!
3. Adv. Mater. Partially Nitrided Ni Nanoclusters Achieve Energy-Efficient Electrocatalytic CO2 Reduction to CO at Ultralow Overpotential
An AEM membrane (Sustainion X37-50 Grade RT), purchased from SCI Materials Hub) was activated in 1 M KOH for 24 h, washed with ultra-purity water prior to use.
4. Adv. Funct. Mater. Nanoconfined Molecular Catalysts in Integrated Gas Diffusion Electrodes for High-Current-Density CO2 Electroreduction
In this paper (Supporting Information), an anion exchanged membrane (Fumasep FAB-PK-130 obtained from SCI Materials Hub (www.scimaterials.cn)) was used to separate the catholyte and anolyte chambers.
SCI Materials Hub: we also recommend our Fumasep FAB-PK-75 for the use in a flow cell.
5. Appl. Catal. B Efficient utilization of nickel single atoms for CO2 electroreduction by constructing 3D interconnected nitrogen-doped carbon tube network
In this paper, the Nafion 117 membrane was obtained from SCI Materials Hub.
In this paper, Proton exchange membrane (Nafion 117), Nafion D520, and Toray 060 carbon paper were purchased from SCI Materials Hub.
7. National Science Review Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways
An anion exchange membrane (PiperION-A15-HCO3) was obtained from SCI Materials Hub.
8. Catalysis Communications Facilitating CO2 electroreduction to C2H4 through facile regulating {100} & {111} grain boundary of Cu2O
Carbon paper (TGPH060), membrane solution (Nafion D520), and ionic membrane (Nafion N117) were obtained from Wuhu Eryi Material Technology Co., Ltd.
Note: Wuhu Eryi Material Technology Co. is a company hold by SCI Materials Hub.
9. Advanced Energy Materials Interatomic Electronegativity Offset Dictates Selectivity When Catalyzing the CO2 Reduction Reaction
The bipolar membrane (Fumasep FBM), carbon paper (SIGRACET 29BC, Freudenberg paper H23C2), ion exchange membrane (Nafion N117), and anion exchange membrane (Fumasep, FAA-3-PK-130) were all obtained from SCI Materials Hub.
10. Separation and Purification Technology *CO spillover induced by bimetallic xZnO@yCuO active centers for enhancing C–C coupling over electrochemical CO2 reduction
5 % Nafion solution was obtained through SCI Materials Hub.
11. National Science Review Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways
In this paper, PiperION-A5-HCO3 anion exchange resin, Fumion FAA anion exchange resin, PiperION-A15-HCO3 and FAA-3-50 were purchased from SCI Materials Hub.
12. Vacuum Controllable dual Cu–Cu2O sites derived from CuxAl-LDH for CO2 electroreduction to hydrocarbons
Nafion and carbon paper (TGPH060) were supplied through SCI Materials Hub.
13. Chemical Engineering Journal Coupling electrocatalytic CO2 reduction with glucose oxidation for concurrent production of formate with high efficiency
An AEM membrane (PiperION, purchased from SCI Materials Hub) was activated in 1 M KOH for 24 h, washed with ultra-purity water prior to use.
In this paper, Sustainion X37-50 Grade RT membrane and the MEA electrolyzer (CRRMEA1a, Figure S34) with 1cm2 active area were obtained from SCI Materials Hub.
微信公众号中文报道:Chem:基于热力学驱动的混合策略形成Cu0/Cu+/Cu0界面用于中性条件CO2电还原C2+
15. Surfaces and Interfaces Modulating surface microenvironment based on Ag-adorned CuO flower-liked nanospheres for strengthening C-C coupling during CO2RR
5 wt.% of Nafion solution, and N115 proton exchange membrane were procured with the help of SCI Materials Hub
16. ACS Appl. Energy Mater. Nanoporous Bismuth Induced by Surfactant-Modified Dealloying for Efficient Electrocatalytic Reduction of CO2 to Formic Acid
The anion exchange membrane (AEM, PiperION A20) and cation exchange membrane (CEM, Nafion 117) were obtained from SCI Materials Hub.
17. Adv. Energy Mater. Tailoring Microenvironments and In Situ Transformations of Cu Catalysts for Selective and Stable Electrosynthesis of Multicarbon Products
For GDE-based CO₂ electrolysis, the MEA reactor (CRRMEA5a, Sci-Materials Hub) consists of a titanium anode plate and a cathode plate with flow fields, along with insulating gaskets, integrated into a compression cell. The geometric area of each flow field is 5 cm² An anion exchange membrane (PiperION, A40-HCO3, Versogen) was used to separate the anode and the cathode.
18. Journal of Environmental Chemical Engineering Evaluation of electromethanogenesis in a microbial electrolysis cell using nylon cloth as a separator: reactor performance and metagenomic analysis
A commercial Nafion PEM (SCI Materials Hub) was used as the control to compare the electromethanogenesis performance.
CRRMEA1a 1cm2 MEA electrolyzer (Figure 4d) was obtained from SCI Materials Hub.
微信公众号中文报道:安徽师范大学最新Angew!全pH范围内铋基催化剂用于安培级电流密度电催化CO2还原
20. Separation and Purification Technology Coupling regulation of boron doping and morphology in nano-floral CuO using one pot method for electrocatalytic CO2 reduction
Carbon paper (TGPH060), Dupont Nafion solution (D520), and proton exchange membrane (N117) were acquired by SCI Materials Hub.
21. Chemical Engineering Journal Manipulating dual effects of morphology and oxygen vacancies through the incorporation of CuO onto CeO2 nanospheres for electrochemical CO2 reduction
Carbon paper (TGPH060), Dupont Nafion solution (D520), and proton exchange membrane (N117) were acquired by SCI Materials Station Hub (SCI Materials Hub, the same author as Ref. 20).
22. Advanced Materials Universal Formation of Single Atoms from Molten Salt for Facilitating Selective CO2 Reduction
The Nafion D520 dispersion and gas diffusion electrode (GDE, Sigracet, 39BB) were obtained from SCI Materials Hub (www.scimaterials.cn).
23. Science Bulletin Compressive strain in Cu catalysts: Enhancing generation of C2+ products in electrochemical CO2 reduction
CRRMEA1a 1cm2 MEA electrolyzer (Figure 3a) was obtained from SCI Materials Hub.
微信公众号中文报道:Science Bulletin:优化水覆盖度促进安培级电流密度下CO2还原C2+
电池
1. J. Mater. Chem. A Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries
Graphene oxide (GO) in this paper was obtained from SCI Materials Hub. The authors introduced a Janus Fe3C/N-CNF@RGO electrode consisting of 1D Fe3C decorated N-doped carbon nanofibers (Fe3C/N-CNFs) side and 2D reduced graphene oxide (RGO) side as the free-standing carrier of Li2S6 catholyte to improve the overall electrochemical performance of Li-S batteries.
This paper used more than 10 kinds of materials from SCI Materials Hub and the authors gave detailed properity comparsion.
The commercial IEMs of Fumasep FAB-PK-130 and Nafion N117 were obtained from SCI Materials Hub.
Gas diffusion layers of GDL340 (CeTech) and SGL39BC (Sigracet) and Nafion dispersion (Nafion D520) were obtained from SCI Materials Hub.
Zn foil (100 mm thickness) and Zn powder were obtained from the SCI Materials Hub.
Commercial 20% Pt/C, 40% Pt/C and IrO2 catalysts were also obtained from SCI Materials Hub.
3. Journal of Energy Chemistry Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries
In this paper, carbon cloth (W0S1011) was obtained from SCI Materials Hub. The flexible carbon cloth matrix guaranteed the stabilization of the electrode and improved the conductivity of the cathode.
4. Energy Storage Materials Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life
The 3D carbon paper (TGPH060 raw paper) were purchased from SCI Materials Hub.
5. Nanomaterials A Stable Rechargeable Aqueous Zn–Air Battery Enabled by Heterogeneous MoS2 Cathode Catalysts
Nafion D520 (5 wt%), and carbon paper (GDL340) were received from SCI-Materials-Hub.
Carbon cloth (W0S1011) and other electrochemical consumables required for air cathode were provided by SCI Materials Hub.
The Zn sheet (99.99%) was purchased from SCI Materials Hub.
8. Nature Communications Atomic-scale regulation of anionic and cationic migration in alkali metal batteries
The lithium metal disk (purity: 99.9%, diameter: 16 mm, thickness: 0.6 mm) was obtained from SCI Materials Hub.
9. Chemical Engineering Journal Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes
CNTs were purchased from SCI Materials Hub.
10. ACS Nano Interfacial Chemistry Modulation via Amphoteric Glycine for a Highly Reversible Zinc Anode
Zn foil (>99.99%, 100 μm) was purchased from SCI Materials Hub.
11. ACS Nano High-Energy and Long-Lived Zn–MnO2 Battery Enabled by a Hydrophobic-Ion-Conducting Membrane
Zn foil (99.9%), carbon paper, and carbon felt were obtained from SCI Materials Hub.
12. Nature Communications Unravelling rechargeable zinc-copper batteries by a chloride shuttle in a biphasic electrolyte
Carbon cloth (CeTech W0S1011), PP membrane (Celgard 2300), Glass fiber (Whatman GF/A), anion exchange membrane (Fumasep FAB-PK-130), and cation exchange membrane (Nafion N-117) were purchased from sci materials hub.
13. PROCEEDINGS OF SPIE A dendrite-free and corrosion-suppressive metallic Zn anode regulated by the hybrid aqueous/organic electrolyte
Zn foil (99.9%, 100 μm thickness) was obtained from the SCI Materials Hub.
14. Journal of Alloys and Compounds Cr-induced enhancement of structural stability in δ-MnO2 for aqueous Zn-ion batteries
The Zn sheet (99.99%) and Whatman GF/D paper were available for purchase on on the SCI Materials Hub.
Carbon coating aluminum foils with a thickness of 16 µm were acquired from SCI Materials Hub.
16. Journal of Industrial and Engineering Chemistry Investigation into electrochemical catalytic properties and electronic structure of Mn doped SrCoO3 perovskite catalysts
KB-EC600JD superconducting carbon black was obtained from SCI Materials Hub.
电解水
1. International Journal of Hydrogen Energy Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis
The cathodic catalysts of Pt/C (20 wt%, 2–3 nm) and Au/C (20 wt%, 4–5 nm) were purchased from SCI Materials Hub.
2. Small Science Silver Compositing Boosts Water Electrolysis Activity and Durability of RuO2 in a Proton-Exchange-Membrane Water Electrolyzer
Two fiber felts (0.35 mm thickness, SCI Materials Hub) were used as the porous transport layers at both the cathode and the anode.
3. Advanced Functional Materials Hierarchical Crystalline/Amorphous Heterostructure MoNi/NiMoOx for Electrochemical Hydrogen Evolution with Industry-Level Activity and Stability
Anion-exchange membrane (FAA-3-PK-130) was obtained from SCI Materials Hub.
4. Chemical Engineering Journal Electronic configuration of single ruthenium atom immobilized in urchin-like tungsten trioxide towards hydrazine oxidation-assisted hydrogen evolution under wide pH media
The non-reinforced anion exchange membrane (AEM) of the coupled system was obtained from SCI Materials Hub (Fumasep FAA-3-50).
5. Cell Reports Physical Science Non-layered dysprosium oxysulfide as an electron-withdrawing chainmail for promoting electrocatalytic oxygen evolution
Nickel foam (NF) was offered by SCI Materials Hub (Wuhu, China), and was ultrasonicated in HCl solution, ethanol, and acetone in proper order before being used in electrochemical measurements.
6. Materials Today Catalysis Valence engineering via double exchange interaction in spinel oxides for enhanced oxygen evolution catalysis
Commercial Cu foam was purchased from SCI Materials Hub.
7. Advanced Functional Materials Elucidating the Critical Role of Ruthenium Single Atom Sites in Water Dissociation and Dehydrogenation Behaviors for Robust Hydrazine Oxidation-Boosted Alkaline Hydrogen Evolution
The nonreinforced anion exchange membrane (AEM) of the HzOR-assisted OWS system was purchased from SCI Materials Hub (Fumasep FAA-3-50).
8. ACS Omega Boosting Hydrogen Evolution through the Interface Effects of Amorphous NiMoO4–MoO2 and Crystalline Cu
Pt/C (20 wt %) was purchased from SCI Materials Hub.
Nafion D521 was purchased from SCI Materials Hub.
10. Molecules Interfacial Interaction in NiFe LDH/NiS2/VS2 for Enhanced Electrocatalytic Water Splitting
Carbon cloth (SCI Materials Hub) were employed as substrates for the in-situ formation of VS2 and NiS2/VS2 on its surface via hydrothermal synthesis.
11. Chemical Engineering Journal Mapping hydrogen evolution activity trends of V-based A15 superconducting alloys
Carbon fiber paper (GDS250) was obtained from the SCI materials Hub.
12. Advanced Science A Dual-Cation Exchange Membrane Electrolyzer for Continuous H2 Production from Seawater
The CEMs include GORE-SELECT Gore M788.12(W. L. Gore & Associates, America) and FUMA Fumasep FKB-PK-130 (FuMa Tech., Co., Ltd., Germany) were provided by SCI Materials Hub.
13. Ind. Eng. Chem. Res. Electrolysis of Tertiary Water Effluents - a Pathway to Green Hydrogen
The PEM electrolyzer stack PSC2000 was purchased from the SCI Materials Hub with a maximum hydrogen production capability of 2000 mL/min. The stack had 8 electrolysis cells with a maximum recommended operation current of 36 A and a voltage of 24 V. Its membrane electrode assembly had an effective area of 56 cm2 per layer and a catalyst loading of 4.0 mg/cm2 on Nafion 117 for Ir black as anode and Pt/C as cathode, respectively. The catalysts were deposited on the Nafion membrane to form a catalyst-coated membrane. Titanium bipolar plates were used to construct the electrolyzer. Water is supplied to the anode side of the electrolyzer stack during operation.
14. Adv. Energy Mater. High-Efficiency Iridium-Yttrium Alloy Catalyst for Acidic Water Electrolysis
Carbon paper (Toray TGP-H-060) was purchased from the SCI Materials Hub.
15. Journal of Alloys and Compounds Amorphous/Crystalline Nife Ldh Hierarchical Nanostructure for Large-Current-Density Electrocatalytic Water Oxidation
The commercial NiFe foam (NFF) was offered by SCI Materials Hub.
W0S1009 Carbon cloth (CC, SCI Materials Hub) were employed as substrate for the in-situ formation of Ru-VS2 and VS2 on its surface via hydrothermal synthesis.
17. Journal of Colloid and Interface Science The dual active sites reconstruction on gelatin in-situ derived 3D porous N-doped carbon for efficient and stable overall water splitting
Nafion D521 was purchased from SCI Materials Hub.
18. Journal of Physics and Chemistry of Solids AgCo bimetallic cocatalyst modified g-C3N4 for improving photocatalytic hydrogen evolution
Nafion D520 dispersion (5 wt%) was purchased from SCI Materials Hub.
19. Separation and Purification Technology NiP2 as an efficient non-noble metal cathode catalyst for enhanced hydrogen isotope separation in proton exchange membrane water electrolysis
Ni supported on Vulcan XC-72, obtained from SCI materials Hub.
20. ACS Appl. Nano Mater. Rapid Electrical-Field-Enhanced Corrosion Endows Ni3Fe/NiFe Layered Double Hydroxide Nanosheets with High-Rate Oxygen Evolution Activity
The Ni3Fe substrate obtained directly from a commercial NiFe foam (nominal Ni 70% at. % + Fe 30 at. %, thickness: 2 mm, porosity: 100 PPI, SCI Materials Hub) was cleaned with acetone, ultrapure water, and ethanol successively and was dried with compressed air.
The proposed thin V-Zirfon separator samples were evaluated at first by water electrolysis at 60 °C using a two-compartment zero-gap electrolyzer (LSCF Alkaline Water Electrolyzer stack [1 cell], purchased from SCI Materials Hub).
22. ACS Materials Lett. Promoting Nonacid Hydrogen Evolution over Ni4Mo/Cu by D-Band Regulation
Commercial Pt/C (20%) from Wuhu Eryi Material Technology Co., Ltd.
Note: Wuhu Eryi Material Technology Co. is a company hold by SCI Materials Hub.
23. Adv. Sci. A Dual-Cation Exchange Membrane Electrolyzer for Continuous H2 Production from Seawater
The CEMs include GORE-SELECT Gore M788.12 (W. L. Gore & Associates, America) and FUMA Fumasep FKB-PK-130 (FuMa Tech., Co., Ltd., Germany) were provided by SCI Materials Hub.
24. Nat. Commun. Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers
Commercial IrO2, Pt/C (40 wt%), anion exchange membrane (Sustainion X37-50 Grade 60) and carbon fiber cloth (CFC) were obtained from SCI Materials Hub.
25. International Journal of Hydrogen Energy Enhancing performance of anion exchange membrane electrolyzer through modification of carbon paper liquid-gas diffusion layer
The anode is made of Ni–Fe foam (60% Fe + 40% Ni, SCI Materials Hub, China), while the cathode is made of carbon paper electrode. AEM employed is the highly stable PiperION™-A40-HCO3 (with a thickness of 40 μm).
26. Nature Communications Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions
Fumasep FAAM-20 anion exchange membrane was purchased from SCI Materials Hub.
燃料电池
1. Polymer Sub-two-micron ultrathin proton exchange membrane with reinforced mechanical strength
Gas diffusion electrode (60% Pt/C, Carbon paper) was purchased from SCI Materials Hub.
Fumion FAA-3-solut-10 was obtained from SCI Materials Hub.
3. Journal of Power Sources Boosting the power density of the H3PO4/polybenzimidazole high-temperature proton exchange membrane fuel cell to >1.2 W cm-2 via the deposition of acid-based polymer layers on the catalyst layers
PBI resin (molecular weight: 60000, SCI Materials Hub), carbon paper 39BB (SGL Carbon), 70 wt% Pt/C (TANAKA) were obtained from SCI Materials Hub.
Fumasep FAA-3-20 was obtained from SCI Materials Hub.
5. ACS Sustainable Chem. Eng. Vanadium-Mediated High Areal Capacity Zinc–Manganese Redox Flow Battery
Zinc plate (thickness 1 mm), copper foam (thickness 1.5 mm), and Ketjenblack (KB) EC-600JD were procured from SCI materials hub.
6. ACS Appl. Energy Mater. Investigation of Pd2B- and NiB-Doped Pd–Ni/C Electrocatalysts with High Activity for Methanol Oxidation
Nafion solution (5 wt %, DuPont) was purchased from SCI Materials Hub.
催化-ORR
1. J. Chem. Eng. Superior Efficiency Hydrogen Peroxide Production in Acidic Media through Epoxy Group Adjacent to Co-O/C Active Centers on Carbon Black
In this paper, Vulcan XC 72 carbon black, ion membrane (Nafion N115, 127 μL), Nafion solution (Nafion D520, 5 wt%), and carbon paper (AvCarb GDS 2230 and Spectracarb 2050A-1050) were purchased from SCI Materials Hub.
2. Journal of Colloid and Interface Science Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation
The 20 wt% Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) were purchased from SCI Materials Hub. This work places emphasis on the kinetics of the ORR concerning Pt3M (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering.
3. Catalysis Solution-Phase Synthesis of Co-N-C Catalysts Using Alkali Metals-Induced N-C Templates with Metal Vacancy-Nx sites
In this paper, PtRu-C (60 % PtRu (3.5nm) on High Surface Area Carbon, Pt:Ru = 1:1, SCI Materials Hub), an alkaline dispersion (PiperION-A5-HCO3-EtOH, 5 wt.%, SCI Materials Hub), anion exchange membrane (PiperION-A type-HCO3, SCI Materials Hub) were used as received.
4. Green Chemistry Low Cell Voltage Electrosynthesis of Hydrogen Peroxide
The proton exchange membranes (Nafion-117, 211, and 212) were from SCI Materials Hub. They were pre-treated by 5 v/v% H2O2 solution for 1 h at 80°C and then treated by 10 v/v% H2SO4 aqueous solution for 1 h at 80°C before assembling to flow cell reactor.
5. Chemosphere Sustainable H2O2 production in a floating dual-cathode electro-Fenton system for efficient decontamination of organic pollutants
Ketogen black (EC-600JD) was purchased from SCI Materials Hub.
6. Journal of Materials Science Carbon dot intercalated MXene with an excellent oxygen reduction reaction electrocatalytic performance
Nafion (5 wt%) was purchased from SCI Materials Hub (Nafion D520).
电容器
1. Journal of Energy Storage Unraveling the detrimental crosstalk between cathode and anode in the aqueous asymmetric capacitor of activated carbon /copper oxide
In this paper, Fumasep FAA-3-50 anion exchange membrane (Thickness 50 μm, surface resistance 0.6–1.5 Ω cm−2, transference number 92–96 %) was bought from SCI Materials Hub.
2. Composites Science and Technology High modulus carbon fiber based composite structural supercapacitors towards reducing internal resistance and improving multifunctional performance
The aluminium tape (Wuhu Eryi Materials Co. LTD) were used as the current collectors.
Note: Wuhu Eryi Material Technology Co. is a company hold by SCI Materials Hub.
催化加氢
1. Nature Communications Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots
In this paper, activated carbon (Vulcan XC-72) was obtained from SCI Materials Hub.
水处理
1. Water Research Electro-peroxone with solid polymer electrolytes: A novel system for degradation of plasticizers in natural effluents
In this paper, Nafion® N324 (SCI Materials Hub), between a 15 cm2 (3 cm × 5 cm) graphite plate anode and a graphite felt cathode (EP-SPE system)
表征
1. Chemical Engineering Journal Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction
An Au nanoparticle film was deposited on the total reflecting plane of a single reflection ATR crystal (SCI Materials Hub, Wuhu, China) via sputter coater.
理论计算
1. Sustainable Energy & Fuels A desulfurization fuel cell with alkali and sulfuric acid byproducts: a prototype and a model
A Fumasep®FKD-PK-75 membrane was used as the cation exchange membrane, in which the the oxygen permeability of membrane was about 1 cm3(STP)/(s cm2 cm Hg) [Ref. SCI Materials Hub]
器件
1. Journal of Materials Science: Materials in Electronics Preparation and application of electrical conductive composites with skin temperature-triggered attachable and on-demand detachable adhesion
Carbon black (CB, Ketjenblack EC 600JD) was purchased from SCI Materials Hub.
材料合成
1. Acta Materialia In situ epitaxial thickening of wafer-scale, highly oriented nanotwinned Ag on tailored polycrystalline Cu substrates
Single-crystal Cu (1 cm × 1 cm) substrates with a (111) orientation were purchased from SCI Materials Hub.
2. Journal of The Electrochemical Society One-Pot Electrodeposition of a PANI:PSS/MWCNT Nanocomposite on Carbon Paper for Scalable Determination of Ascorbic Acid
Raw carbon paper was purchased from SCI Materials Hub
催化降解
1. Journal of Environmental Chemical Engineering Conversion of CoNiFe-LDH to CoNiFe-MOF/LDH as catalyst for efficient heterogeneous electro-Fenton degradation of sulfonamide antibiotics
The hydrophobic microporous laminated carbon paper (HML-CP) (2 cm × 2.5 cm) was chosen as a cathode and fabricated by Wuhu Eryi Material Technology Co. (Anhui, China).
Note: Wuhu Eryi Material Technology Co. is a company hold by SCI Materials Hub.
催化电解
1. Chemical Engineering Journal Modulation of energy barrier of reaction steps over S-doped Ni(OH)2/Cu composites to achieve high-performance urea electrolysis catalysts
Commercial Pt/C (20 wt%) was purchased from Wuhu Eryi Material Technology Co., LTD.
Note: Wuhu Eryi Material Technology Co. is a company hold by SCI Materials Hub.
Nafion (5%) was purchased from SCI Materials Hub.
环 境
1. Journal of Materials Research and TechnologyTribocorrosion performance of TC4 anodized/carbon fiber composite in marine environment
Carbon fiber cloth WOS1011H(M) purchased from Wuhu Eryi Materials Technology Co.
Note: Wuhu Eryi Material Technology Co. is a company hold by SCI Materials Hub.
热 电
1. Chemical Engineering Journal High power density charging-free thermally regenerative electrochemical flow cycle for low-temperature thermoelectric conversion
The heat exchangers are composed of 20 μm thick titanium foil (SCI Materials Hub), 1 mm thick rubber gasket and 2 cm thick organic glass from the inside to the outside.
为科学研究提供来源广泛的材料 材料合成仪器装置及材料解决方案 备案号:皖ICP备2021011042号-1 |
关于我们 |